Unsupervised Data Classification for Convex and Non Convex Classes
نویسندگان
چکیده
منابع مشابه
Unsupervised Classification via Convex Absolute Value Inequalities
We consider the problem of classifying completely unlabeled data by using convex inequalities that contain absolute values of the data. This allows each data point to belong to either one of two classes by entering the inequality with a plus or minus value. By using such absolute value inequalities (AVIs) in support vector machine classifiers, unlabeled data can be successfully partitioned into...
متن کاملConvex NMF on Non-Convex Massiv Data
We present an extension of convex-hull nonnegative matrix factorization (CH-NMF) which was recently proposed as a large scale variant of convex non-negative matrix factorization (CNMF) or Archetypal Analysis (AA). CH-NMF factorizes a non-negative data matrix V into two non-negative matrix factors V ≈ WH such that the columns of W are convex combinations of certain data points so that they are r...
متن کاملA Non-generative Framework and Convex Relaxations for Unsupervised Learning
We will describe a novel theoretical framework for unsupervised learning which is not based on generative assumptions. It is comparative, and allows to avoid known computational hardness results and improper algorithms based on convex relaxations. We show how several families of unsupervised learning models, which were previously only analyzed under probabilistic assumptions and are otherwise p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2011
ISSN: 0975-8887
DOI: 10.5120/2917-3843